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An analysis is made of electron transfer (ET) in a polar medium described by a distribution of dielectric relaxation times, for 
the case that intramolecular contributions to the ET are negligible. The generalized moment expansion is used for an approximate 
multi-exponential description of the non-exponential time behavior of the ET. As an example, ET in glycerol-like solvents is 
considered, treated by the spatially inhomogeneous model for dielectric relaxation. For this model the ET rate at long times is 
found to vary as 7~‘~ 7. being a dielectric relaxation time parameter, in contrast with a fractional dependence at short times. 

1. Introduction 

Recent experimental [ l-101 and theoretical 
[ 1 l-271 results have established that ET in polar 
solvents can depend strongly on the dielectric relax- 
ation of the surrounding medium. When intramo- 
lecular contributions to the ET are negligible, and 
the dielectric relaxation of the solvent around the 
donor-acceptor complex is characterized by a single 
dielectric relaxation time t (Debye solvent) #I, the 
time behavior of the ET process is single exponential 
[ 19,2 11. This time behavior holds approximately 
even in case the barrier of the reaction is small. For 
the single-exponential time behavior an ET transfer 
rate constant can be defined unambiguously and is 
given by 

1 
l+I,, 

kET0 = k 
(1) 

where 7 is the longitudinal dielectric relaxation time 
of the solvent. I is a numerical factor depending on 
the free energy barrier AC* of the reaction [ 19,2 11, 

’ Contribution No. 7688. 
xl We note, however, that there is recent theoretical and experi- 

mental evidence that, although the bulk dielectric properties 
of a solvent have Debye form, the local dielectric relaxation in 
the vicinity of an ion can be more complicated; see, e.g., refs. 
[ 24-261, and references therein. 

z= ln2+2 ’ drexPW -x’MAG*l- 1 I 1 -x2 
0 

NN dm exp(PAG*) , for BAG* large . 

(2) 

/3 is the scaled inverse temperature, p= (k,T) - I, and 
the free energy barrier AG* is related to the standard 
free energy AGO of the reaction by AG*= 
(AGO -&J2/4&, A0 being the reorganization energy 
of the solvent [ 19,211. The rate constant k, in eq. 
(1) is the equilibrated ET rate constant, 

k, = v, exp( -BAG*) , (3) 

and refers to adiabatic as well as non-adiabatic pro- 
cesses [ 111. The functional form of the prefactor v, 
in eq. (3) depends on the adiabaticity of the reaction 
[ 18,19 1. Experimentally, the observed rate constant 
kET will be k, in the limit of fast dielectric relaxation 
of the solvent. 

For ET processes with non-vanishing intramole- 
cular contributions the time behavior of the fraction 
Q(t) of non-reacted donors can deviate strongly from 
a single-exponential form [ 19,211. This behavior is 
also expected for ET in a medium inhomogeneous 
with respect to the dielectric relaxation times [ 221, 
even in the absence of intramolecular contribu- 
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tions #2. In such a situation the unambiguous defi- 
nition of a (time-independent) ET rate constant is 
no longer possible. Instead, for a comparison of the- 
oretical results with experiment the full complexity 
of the time behavior of Q(t) should be taken into 
account in this case. 

Recently, McGuire and McLendon [9] have re- 
ported results on intermolecular ET in solid glycerol 
which indicated a fractional power-law dependence 
of the ET rate on the dielectric relaxation time, k,, 
a~-'.~. The analysis of their experiment is some- 
what indirect since they observed ET between ran- 
domly distributed donors and acceptors, i.e. they saw 
a superposition of many different ET processes, and 
inferred a time-independent ET rate constant from 
their time-resolved data under the assumption of a 
single-exponential behavior for each individual pro- 
cess. The dielectric behavior of glycerol deviates 
strongly from a Debye form [ 281, and the deviation 
has been considered as deriving from an underlying 
microscopic spatial inhomogeneity in the dielectric 
relaxation times [ 22,291. Rips and Jortner [ 221 have 
shown that under this assumption the short-time rate 
constant k,= - (dldt) Q( t= 0) exhibits a fractional 
power-law dependence, the exponent being equal to 
the exponent governing the distribution of relaxa- 
tion times, as in eq. (8) below, having a value of 
about 0.6 for glycerol. One expects that the full time 
behavior of Q( t) would be strongly non-exponential. 
Subsequently, Heitele et al. [ lo] reported time-re- 
solved measurements of intramolecular ET in pro- 
pylene glycol, having dielectric properties similar to 
glycerol, which showed a strong deviation from a 
single-exponential behavior. The short-time rate 
constant inferred from their observed Q(t) again 
showed the fractional power-law dependence on r 
with an exponent of about 0.6. 

transition, would also provide interesting informa- 
tion concerning the glassy properties of these media. 
For example, the temperature dependence of the time 
range for the validity of the inhomogeneous medium 
approximation could give information about the 
freezing out of dynamical degrees of freedom near 
the glass transition. It should also be noted that the 
nature of the microscopic processes giving rise to the 
Davidson-Cole behavior of the dielectric spectrum 
and to other relaxation processes with similar prop- 
erties in glycerol and glycerol-like solvents has ap- 
parently not yet been resolved #3. The time behavior 
of ET is related to this question because of the cou- 
pling of ET to the dielectric relaxation. 

In the following we wish to provide some theo- 
retical tools for a further analysis of time-resolved 
measurements. An algorithm is given, based on the 
generalized moment expansion method [ 3 11, for the 
approximate description of the non-exponential time 
behavior of ET in an inhomogeneous medium, and 
is applied to the particular case of glycerol-like sol- 
vents. In this Letter we restrict our attention to the 
case of ET with a vanishing intramolecular contri- 
bution, where the local time behavior of the reaction 
can be described by eq. (1) . The more complex case 
of including a contribution from the intramolecular 
degrees of freedom will be treated in a later publi- 
cation [ 321. 

2. Theory 

This successful description of the short-time be- 
havior of ET in glycerol-like solvents raises the ques- 
tion of the time range of the validity of a static model 
using a distribution of dielectric relaxation times. 
Apart from providing a further check of that hy- 
pothesis on the origin of the dielectric behavior of 
glycerol-like solvents, an analysis of the full range of 
time-resolved data on ET, particularly near the glass 

The time behavior of a reaction process is usually 
monitored by observing the fraction Q(t) of the un- 
reacted species at time t. In the case of ET, for ex- 
ample, Q(t) is the fraction of unreacted donor-ac- 
ceptor complexes. In a spatially inhomogeneous me- 
dium, each donor-acceptor has a local solvent en- 
vironment with a relaxation time T, with a probability 
distribution g(r) for the latter. The time behavior of 
a local reaction process is described by a function 
Q( t 1 T) that depends on the actual microscopic en- 
vironment through the parameter z. The macros- 
topically observed time behavior is obtained by 

” For a spatially homogeneous medium multiple relacation times #’ For a discussion of different points of view and of experimen- 
have been treated in an electron transfer context in ref. [ 271, tal results, see, e.g., ref. [ 301. 

25 



Volume 144, number I CHEMICAL PHYSICS LETTERS 12 February 1988 

averaging the local function Q( t 17) over the distri- 
bution g(r), i.e. 

(4) 

Even when Q( t 17) is single-exponential eq. (4) can- 
not be evaluated analytically, in general, and Q(t) is 
expected to be strongly non-exponential. However, 
provided the generalized moments [ 311, i.e. the 
short-time moments (n 2 0) 

d” 
K, = ( - 1)” dt” t_oQW 

and the long-time moments 

u.=&,~d”n-‘QO~ 

(-0) 

W 

(5b) 

are finite (and non-zero), and can be calculated an- 
alytically or numerically, one can determine a multi- 
exponential approximation 

(6) 

to the non-exponential function Q(t) [ 331 #4. The 
parameters bj and lj in the N-exponential approxi- 
mation eq. (6) are determined from the requirement 
that qN( t) reproduces N short-time moments (5a) 
and N long-time moments (5b), as in ref. [ 3 11. An 
actual algorithm to determine these parameters from 
the moments p_N t0 &,_ I is provided in the present 
appendix. The degree N necessary for a sufficient ap- 
proximation is determined by comparing approxi- 
mations of successive degree. If the plot of qN+, (t) 
does not change visibly from qN( t), the approxi- 
mation is presumed to be converged. In our expe- 
rience, the convergence is relatively rapid because of 
the construction of qN(t) as an interpolation be- 
tween short-time and long-time behavior. 

We assume in the following that for ET in an in- 
homogeneous medium the local function Q( t ) 7) is 

M This approach applies to pseudo-first-order reactions with an 
exponential long-time behavior. In case of an algebraic long- 
time tail Q(t)cc-0 for f+w, like, e.g., as in case of second- 
order reactions, a modified treatment can be given. The situa- 
tion of ET donors and acceptors not forming isolated com- 
plexes and donors not in excess of acceptors would be such a 
case. However, we do not wish to introduce unnecessary com- 
plications here. 

given by a single exponential with rate constant 
&-(r), eq. (1). In this case the generalized moments 
can be determined easily to be averages of powers of 
the rate constant with respect to g( 7), i.e. 

(7) 

3. Example: ET in glycerol-like solvents 

In glycerol, propylene glycol, and other solvents 
the data on the frequency dependence of the dielec- 
tric constant (Davidson-Cole spectrum [ 281) can 
be described in bne view by assuming there exists a 
distribution of dielectric relaxation times [ 291 

B 

) forz<zo ) (8) 

with gDc( z) being zero for T > zo, the exponent p 
having a value of about 0.6 in the case of glycerol, 
and of about 0.66 in the case of propylene glycol. Us- 
ing this distribution of relaxation times the gener- 
alized moments can be calculated readily from eq. 
(7)) with the result 

/%=(k,)“F(n,/$ 1; -A) 9 (9) 

where F is the hypergeometric function [ 341 and 

A=&T0, (10) 

with I given by eq. (2). 
For negative values of n the function F is given by 

polynomials in A, 

F( -q/3; 1; -A)= Vgo 
0 

; (P)“$ (n>O) > (11) 

where (:) is a binomial coefficient and (j3)” is 
Pochhammers symbol [ 341, 

with (/3)0= 1. For positive values of n the functional 
form of’F in eq. (9) can be determined by succes- 
sively using Gauss’ recurrence relations [ 341, 

fin+ 138; 1; -A) =&) 
x{[n(2+A)-(l+j?A)]F(n,/3; 1; -A) 

-(n-l)F(n-l,B; 1; -A)}, UW 
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with unreacted fraction Q(t) 

&t&p; 1; -A)=1 

and 

(12b) 

F&/3; 1; -A)=(l+A)-+ (12c) 

as starting values. Specifically, the lowest-order short- 
and long-time moments are 

p, =k,(lSA)-fi ) (134 

clo=l, (13b) 

p-1 =k,‘(l +/?A) , (13c) 

~_Z=ke2[1+28A+18(8t1)A2]. (13d) 

For A < 1 the time behavior of Q(t) is approxi- 

----- 7b 

0 I ‘.‘-...... . . . ..__.....___. 

0 5 10 15 20 

reduced time k,t 

mately single exponential with a relaxation time given 
byp_ r. This result can also be seen from the fact that 
all moments can be approximated, correctly up to 
firstorderinA,by~u,rr(k,)“(l+jL4)”,whichhasthe 
functional dependence on n expected from a single- 
exponential behavior of Q(t) . The non-exponential 
behavior becomes pronounced for A B 1, In fig. 1 
the results for the non-exponential time behavior of 
Q(t) using the method of section 2 are shown for 
A = 10 and for A = 100. The value of /I used was 0.6. 
The multi-exponential approximation was consid- 
ered converged for N= 3 and N= 5, respectively. 

unreacted fraction Q(t) 

For comparison, and in order to demonstrate the 
deviation from a single-exponential behavior, we 
have included in Iig. 1 several one-exponential ap- 
proximations. The short-time approximation 

qS(t) = exp( -M) , U4a) 

with 

._ . . . --_. 
0 I “........ , 

0 50 100 150 200 

reduced time k,t 

k=P, (14b) 

is equivalent to the approximate description already 
discussed by Rips and Jortner [ 221. Fig. 1 shows that 
this approximation is useful at sufficiently short 
times. Its range of validity, which decreases with in- 
creasing values of A, i.e. for increasing zO, can be- 
come quite small at large A, as is demonstrated in fig. 
lb. The long-time approximation 

qb(t)=qb(O)exp(-tlrb), (1W 

with 

Fig. I. Surviving fraction Q(t) versus time for A= 10 (upper) 
and A= 100 (lower); the Davidson-Cole exponent is P-0.6; 
(dotted) short-time approximation, eqs. (14); (dashed) long-time 
approximation, eqs. (15); (dash-dotted) mean relaxation time 
approximation, eq. (16). 

and 

qb(o)=(fl-l)2h-2 (15c) 

reproduces the first two long-time moments (5b) of 
the exact function Q(t). As fig. 1 shows, it provides 
a reasonable approximation of the exact Q(t) for. 
k,ta iA. In the mean (or linear) relaxation time 
approximation 

(15b) 

W) = exp( -t/r,) , (16) 

the time constant ra is given by the first long-time 
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unreacted fraction Q(t) 

0.2 

OL I I I I 
0 50 100 150 200 

reduced time k,t 

Fig. 2. Comparison of exact Q(t) with Kohlrausch-Williams 
-Watts function, eq. (17); A = 100. 

moment p- 1. The mean relaxation time r, is fre- 
quently employed as a first approximation of the time 
scale of the relaxation and, therefore, of the inverse 
of the average rate constant. Fig. 1 shows that, other 
than for short times, ra is a much better estimate than 
the short-time rate constant k, at large values of A. 
However, the long-time approximation eq. (15) is 
still superior to eq. (16) as an approximate descrip- 
tion of the decay of Q(t) for k,t k fA. 

A common approximation of relaxation processes 
in glassy systems is the stretched exponential func- 
tion [30] 

k(t)= exd - (tIrdaKl , (17) 

sometimes also called the Kohlrausch or Williams 
-Watts function. A modification of the generalized 
moment scheme [ 351 can be used to determine an 
optimized stretched exponential description of Q( t). 
The parameters ok and rK are given as solutions of 
the coupled equations 

p-1 = 
TJ(lhd , ~_ _ (TK)2r(2/aKj 

2- , (18) 
% CyK 

where r is the gamma function [ 341. For large val- The short-time rate constant k, shows a fractional 
ues of A (A> 100) these parameters are akc0.78 power-law dependence on r0 for slow dielectric re- 
and rK=0.65rb. In fig. 2, eq. (17) is compared with laxation, k, cc @, as discussed by Rips and Jortner 
the exact function for A = 100. It is evident that Q(t) [ 221. In contrast, a different behavior holds for the 

deviates somewhat from a stretched exponential 
form. However, eq. (17) is seen to provide a rea- 
sonable first approximation of the exact behavior 
over the full time range. 

4. Discussion 

We have presented above an analysis of the non- 
exponential time behavior of ET in glycerol-like sol- 
vents, under the assumption that the dielectric re- 
laxation in this medium can be described by an 
intrinsic spatial inhomogeneity. Some conclusions 
that can be inferred from the above results are com- 
mented on below. 

First, however, we comment on the significance of 
the important parameter A, defined in eq. (10). As 
the form of eq. (1) indicates, l/Ir is a solvent-dy- 
namics-controlled rate constant, when the solvent 
dielectric relaxation time is T (cf. also refs. [ 19,2 1 I). 
The smallest value of the latter for the present in- 
homogeneous distribution of T values is ~/IT,,, since 
razz in eq. (8). Thus, A is the ratio of k, to this 
smallest solvent-controlled rate constant l/ZrO. 

The short-time description of Rips and Jortner, 
useful at sufficiently short times, is seen to be ap- 
plicable only for a small time range (relative to the 
time scale of the overall decay) when the parameter 
A is large, i.e. when the dielectric relaxation becomes 
slow. This result is particularly relevant near the glass 
transition, since z. becomes large in this regime. Laser 
excitation of a reaction is frequently employed now- 
adays to study time-resolved reaction dynamics, and 
a successful deconvolution from the shape of the laser 
pulse is needed to extract the detailed very-short-time 
behavior. 

We note that the non-exponential character of the 
decay of Q( t) is present mainly in the very-short-time 
range. As seen in fig. 1, the long-time approximation 
eq. (15) is a reasonable approximation for k,tz fA. 
tb can therefore be regarded as the inverse of a valid 
long-time ET rate constant, and may be the domi- 
nant contribution to a multi-exponential fit to ex- 
perimental data. 
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long-time relaxation times ra and rb, as seen from 
eqs. (13), (15),and (16),inthecaseofthespatially 
inhomogeneous model for the solvent. Both relaxa- 
tion times depend linearly on zo, i.e. r&zctO, for to 
large. It may also be noted from eqs. (13)) (15)) and 
(16) that the ratio of 7= and Tb assumes a constant 
value in the limit of very slow dielectric relaxation, 
i.e. for A-tax This constant is given by 

(19) 

and has a value of about 3/4 for glycerol (BwO.6). 
The single-exponential value of r,/.t, would be unity. 
The result that T,,ba 70, for large ro, is not surprising: 
At long reaction times, the donor-acceptor com- 
plexes that are in a solvent environment with the 
shorter t values in the distribution in eq. (8) have 
largely reacted, leaving as survivors mainly com- 
plexes whose solvent environment tends to have z 
values near the peak at z. in the distribution, 7. being 
the largest relaxation time in eq.( 8). 

Comparison of the theoretically predicted long- and 
very-short-time behavior of ET with experimental 
data may serve to determine whether the static de- 
scription using a distribution of relaxation times 
[ 28,291 is appropriate for glycerol-like solvents, or 
whether a more dynamical model is necessary. In- 
deed, in a more dynamical model Ta,$ may no longer 
be proportional to r. at large ro. 
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Appendix 

The algorithm to determine the parameters bi and 
li of the multi-exponential approximation eq. (6) 
from the moments ,LL~ to j&%,--l presented below is 
the one given in ref. [ 3 11. However, we repeat it here 
for the sake of completeness and easier accessibility. 

The rates ;li of the approximation eq. (6) are the 
eigenvalues of the Frobenius matrix 

, (Al) 

a special form of an upper Hessenberg matrix [ 361. 
Due to the specific from of F, these eigenvalues can 
be determined, alternatively to numerical diagonal- 
ization, by determining the roots of the related po- 
lynomial in I, 

P#)=lN-YN_,LN-- -..*-y,Ly, , (442) 

The yi in F are the elements of a vector y which is 
the solution of the linear equation 

b-N, (A31 

where the matrix A is given by (i, j= 0, . . . . N- 1) 

(A)ij=P-N+t+j 3 (A4) 

and the vectors aj by (i=O, . . . . N- 1; j=O, . . . . N) 

taj)i=LN+i+j . (A51 

The amplitudes bi of the exponentials in eq. (6) 
are given by 

(A6) 

wherefi is the (right) eigenvector of the matrix F for 
the eigenvalue Ai. Because of the simple form of F the 
eigenvectors can be determined directly from the ei- 
genvalues, i.e. 

Vi)0 = Yo% (ATa) 

(L),=[(X)j--1 +YjllA 7 jBo 9 (A7b) 
The vectors a and a’ in eq. (A5) are particular vec- 
tors aj given for even N by 

a=a =aNJ2, (Agal 

and for odd N by 

a=a(N-l)/2, a’=a(N+l)/Z. (A8b) 
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